Sustainable Solutions for Energy Efficiency and Acoustic Performance

Gallaudet University

Sorenson Language and Communication Center

Washington, DC

AE Senior Thesis Presentation by:

Patrick B. Murphy

Mechanical Option

Wednesday, April 18, 2007

(SmithGroup, 2006)

Future home of

ASL and Deaf Studies Communication Studies Government and History Hearing, Speech, and Language Sciences Linguistics Sociology

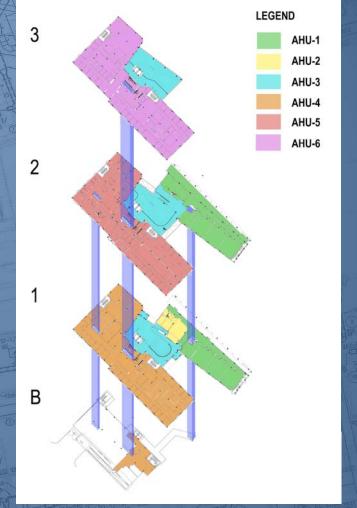
(Gallaudet University, 2006)

Gallaudet University

(Gallaudet University, 2006)

Patrick B. Murphy Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

vis·u·cen·tric (vĭzh'ōō–sĕn'trĭk) *adj*.: the design of a distinctive structure that clearly and unmistakably says: "This is a space for deaf people."

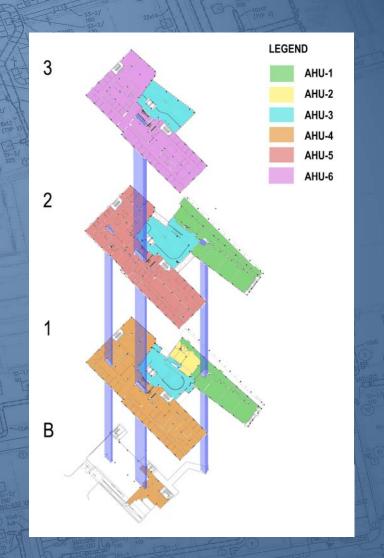


(SmithGroup, 2006)

Patrick B. Murphy Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Existing Mechanical System Conditioned Air Chilled Water Steam

Patrick B. Murphy Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007


Existing Mechanical System

Conditioned Air

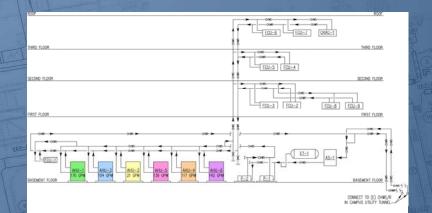
- Facility served by six (6) AHUs
- AHUs located in basement
- Appx. 30% Outdoor Air
- 53°F Supply Air
- VAV Terminal Units (142)

Chilled Water

Steam

Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007


Existing Mechanical System

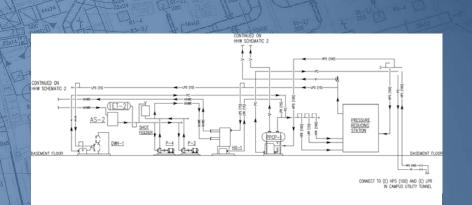
Conditioned Air

Chilled Water

- Service from Central Utilities Building
- 43°F Chilled Water Supply
- Serves AHU Cooling Coils

Steam

Patrick B. Murphy Mechanical Option


AE Senior Thesis Presentation Wednesday, March 18, 2007

Existing Mechanical System

Conditioned Air Chilled Water

Steam

- Service from Central Utilities Building
- HPS (100 psig) reduced to LPS (15 psig)
- Plate-Frame HX uses LPS to produce
 - 108°F HHW at 280 gpm
- HHW serves AHU Heating, VAV Reheat Coils

HEATING HOT WATER DIAGRAM

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

THESIS DESIGN GOALS

- 1. Reduce facility energy use
- 2. Improve acoustic conditions in sensitive spaces

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

A Dedicated Outdoor Air System (DOAS) supplies a constant volume of outdoor air per ventilation requirements.

A Parallel Cooling System compensates for space sensible loads.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

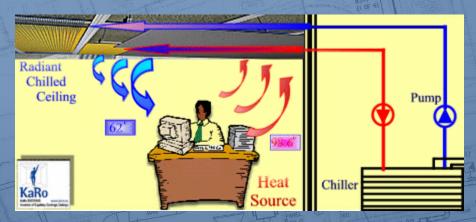
DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

The DOAS System will supply 30% greater outdoor air than required by ASHRAE Std. 62.1.

- System only delivers about 35% of original VAV supply air at T_{SA} of 55°F.
- VAV boxes may be eliminated
- AHUs and ductwork may be significantly downsized.
- Reduced fan energy required.

		SUMMARY									
AHU	# Zones / VAVs	Area Served [SF]	ASHRAE Minimum OA [CFM]	DOAS Design OA [CFM]	Original Design OA [CFM]	Reduction in OA Flow [CFM]	DOAS Design SA [CFM]	Original Design SA [CFM]	Reduction in SA Flow [CFM]		
1	19	13185	2000	2650	4130	35.8%	2650	17400	84.8%		
2	3	1311	390	515	360	-43.1%	515	2230	76.9%		
3	0	7990	1240	2890	2890	0.0%	2890	13070	77.9%		
4	44	15285	2875	3875	4650	16.7%	3875	14080	72.5%		
5	37	15061	2405	3725	4550	18.1%	3725	11965	68.9%		
6	39	15146	2990	4180	4050	-3.2%	4180	14130	70.4%		
4/ 6	83	30431	5865	8055	8700	7.4%	8055	28210	71.4%		
		•			•	•					
TOTALS	142	67978	11900	17835	20630	13.5%	25890	72875	64.5%		



Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

One parallel cooling strategy is radiant panels.

- Chilled water (60°F) runs through piping thermally coupled to metal panel in ceiling.
- Sensible cooling capacity of about 21 BTU/SF.

(www.naturalcooling.com, 2007)

Thesis Investigations

DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

One parallel cooling strategy is radiant panels.

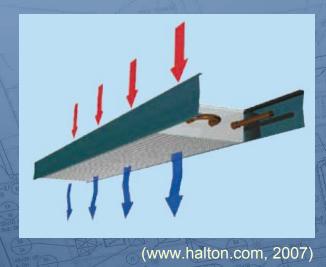
- Chilled water (60°F) runs through piping thermally coupled to metal panel in ceiling.
- Sensible cooling capacity of about 21 BTU/SF.

NOT SELECTED BECAUSE:

- Too many panels are necessary to fit in available ceiling space of some rooms.
- Metal panels replace acoustic ceiling panels, alter space acoustics.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007


Thesis Investigations

DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Another parallel cooling strategy is passive chilled beams.

- Chilled water (60°F) runs through piping thermally coupled to metal fins in ceiling beam unit.
- Warm air from plenum is drawn through unit and into space by natural buoyancy forces.
- Sensible cooling capacity of about 250 BTU/hr-SF.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Another parallel cooling strategy is passive chilled beams.

- Chilled water (60°F) runs through piping thermally coupled to metal fins in ceiling beam unit.
- Warm air from plenum is drawn through unit and into space by natural buoyancy forces.
- Sensible cooling capacity of about 250 BTU/hr-SF.

SELECTED BECAUSE

- Higher cooling capacity than radiant panels means
 fewer units.
- Relatively quiet distribution of cool air.

Patrick B. Murphy

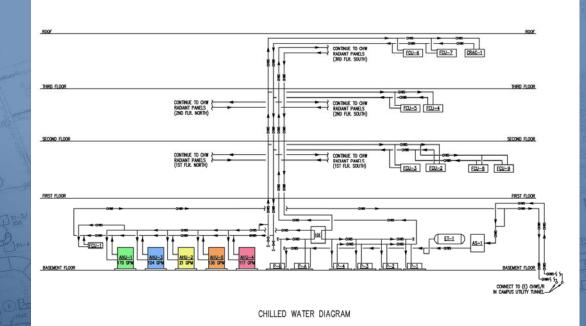
Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

A separate chilled water loop is necessary to supply 60°F water to the chilled beams.


- Chilled water supplied to beams must be warmer than the room air dew point to prevent condensation.
 - $T_{S} = 60^{\circ}F < T_{dp} = 57.8^{\circ}F$

 This loop is maintained at a 16°F ΔT, must be adequately controlled to prevent condensation on unit piping.

- Chilled water is supplied to facility at 43°F with a 10°F Δ T.
- Three (3) parallel pumps and one backup.

A separate chilled water loop is necessary to supply 60°F water to the chilled beams.

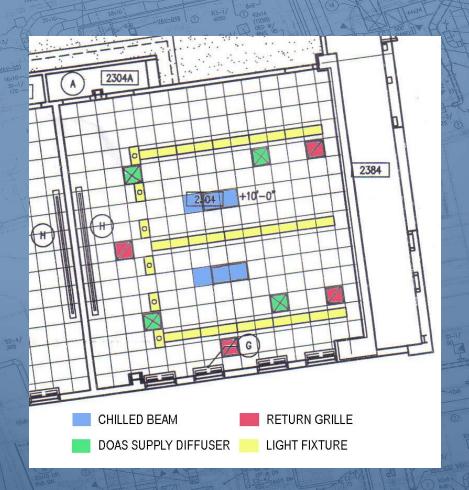
Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis


Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

- Ventilation Strategy
- Radiant Panels
- Chilled Beams
- System Schematic
- Suggested Layout
- Design Implications
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

A DOAS system with chilled beams conditions spaces effectively and quietly.

- Air distribution is significantly reduced.
- AHUs, fans, ductwork, etc. are downsized.
- Chilled beams fit within the ceiling area of rooms while radiant panels do not.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

Green Roof Application

- Design Goals
- Intensive vs. Extensive
- Selection and Layout
- Design Implications
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

Green Roof Application

- Design Goals
- Intensive vs. Extensive
- Selection and Layout
- **Design Implications**
- **Energy Analysis**
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Green Rooi Design Goals:

- 1. Reduce building cooling loads.
- 2. Improve acoustic insulation from outside noise.
- 3. Significantly reduce site stormwater runoff.
- 4. Create a more aesthetically pleasing roof.

James Lee

Sorenson Language and Communication Center

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

Green Roof Application

- Design Goals
- Intensive vs. Extensive
- Selection and Layout
- Design Implications
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

There are two typical types of green roofs:

Intensive

Larger grasses, shrubs, small trees.

6"+

Deep

50 lbs/SF +

Soil Depth Root Structures Structural Loads

Plants

Small seedum, grasses, mosses. 2"-4" Shallow Appx. 25 lbs/SF

Extensive

(greenroofplants.com)

(greenroofplants.com)

is selected for the SLCC.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

Green Roof Application

- Design Goals
- Intensive vs. Extensive
- Selection and Layout
- Design Implications
- **Energy Analysis**
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

The extensive green roof has the benefits of:

- Reduced building cooling loads.
- Acoustic insulation.

An extensive

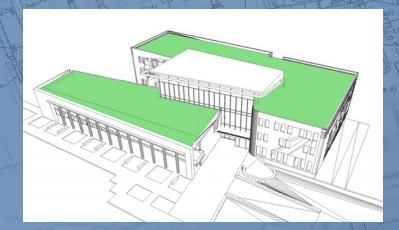
- Stormwater retention.
- Reduced Urban Heat Island Effect.
- Improved aesthetics.

....without as negative an impact on:

- Increased structural loads.
- Increased first cost.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007


Thesis Investigations

DOAS w/ Parallel Cooling

Green Roof Application

- Design Goals
- Intensive vs. Extensive
- Selection and Layout
- **Design Implications**
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Proposed scope of green roof application:

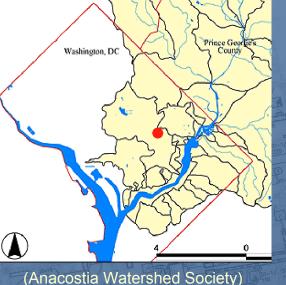
Plant Selection: sedum kamtschaticum

- Highly drought resistant.
- Mid-summer bloom of white flowers.
- Up to 6" tall.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations


DOAS w/ Parallel Cooling

Green Roof Application

- Design Goals
- Intensive vs. Extensive
- Selection and Layout
- Design Implications
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

A Green Roof will improve stormwater management.

- Green Roofs withhold about 70% of rainfall.
- Non-green roofs shed about 95% of rainfall.
- Rain leaders may be downsized.
- Less pollution is swept into the Anacostia River and Chesapeake Bay.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations


DOAS w/ Parallel Cooling

Green Roof Application

- Design Goals
- Intensive vs. Extensive
- Selection and Layout
- Design Implications
- **Acoustics Analysis**
- LEED Analysis
- Cost Analysis

A Green Roof will help reduce the urban heat island effect.

- Cities can experience up to 10F warmer temperatures than surrounding rural areas.
- Pavement, sidewalks, buildings absorb and radiate radiation.
- Plants, however, provide shade and use energy for evapotranspiration.
- The original high-albedo "cool roof" also achieves this goal.

Low Thermal Radiation (vegetation)

(Baumann)

Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
 - Original Design
 - DOAS System
 - Green Roof
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

- Green Roof Application
- Energy Analysis
 - Original Design
 - DOAS System
 - Green Roof
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Annual Energy Use and Cost by End Use

The total building energy required with the original

VAV system is expected to be about \$153,000.

End Use	Energy Type	Electric [kWh]	Oil [MBH]	Energy Use [MBH]	Energy Cost
Lighting	Electricity	223695		763246	\$20,222
Space Heating	Remote HW		89314	89314	\$1,237
Space Cooling	Remote CW		3403435	3403435	\$90,174
Fans	Electricity	83838		286057	\$7,579
Pumps	Electricity	115144		392871	\$10,409
Receptacles	Electricity	258639		882478	\$23,381
TOTAL		681316	3492749	5817400	\$153,002

(Carrier's HAP)

Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

DOAS w/ Parallel Cooling

Green Roof Application

Energy Analysis

- Original Design
- DOAS System
- Green Roof
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

The total building energy required with the DOAS system is expected to be about \$128,600.

This is a savings of about \$25,000 over the VAV system.

Annual Energy Use and Cost by End Use

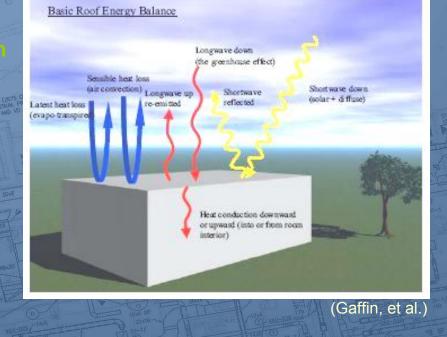
End Use	Energy Type	Electric [kWh]	Oil [MBH]	Energy Use [MBH]	Energy Cost
Lighting	Electricity	223053		761057	\$20,164
Space Heating	Remote HW		35668	35668	\$494
Space Cooling	Remote CW		2786186	2786186	\$73,820
Fans	Electricity	101593		346635	\$9,184
Pumps	Electricity	19580		66806	\$1,770
Receptacles	Electricity	256925		876627	\$23,226
TOTAL		601150	2821854	4872979	\$128,658

(Carrier's HAP)

James Lee

Sorenson Language and Communication Center

Patrick B. Murphy

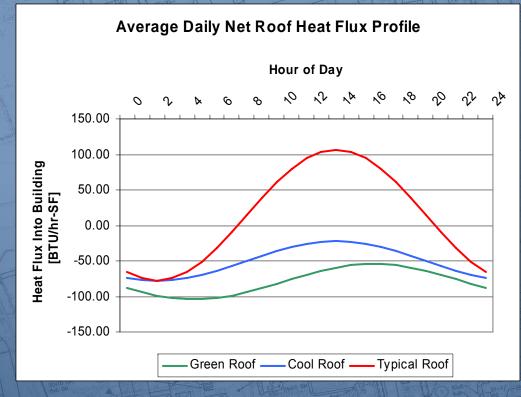

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
 - Original Design
 - DOAS System
 - Green Roof
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

A Green Root experiences several modes of heat transfer:

- Incident and Reflected Solar (Shortwave) Radiation
- Incident and Emitted Infrared (Longwave) Radiation
- Convection
- Conduction
- Evapotranspiration



Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

An energy balance of the Green Roof for one month DOAS bins produces the following conductive heat gain: Green

DOAS w/ Parallel Cooling

Green Roof Application

Energy Analysis

- Original Design
- DOAS System
- Green Roof
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application

Energy Analysis

- Original Design
- DOAS System
- Green Roof
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

The proposed Green Roof could reduce building cooling loads by an average of 20 BTU/hr-SF and save almost \$7,000 annually.

- This is not a significant energy cost savings over the original "cool roof."
- The green roof could provide significant energy savings over a traditional roof.

		Green Roof		Cool Roof	Typical Roof
	Cooling Load			Cooling Load	Cooling Load
	[BTU/hr-ft ²]	[MBH/hr]	Odvings [ψ]	[BTU/hr]	[BTU/hr]
Average 24hr	79.09	723	\$0.02	49.83	
Average 2411		4,236	\$0.11		92.35
Annual	28,887	264,110	\$6,997.60	18,199	
Annual	20,007	1,547,283	\$40,995.27		33,730

Total Energy Savings for Green Roof Design

Green Roof Area: 24710ft²

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

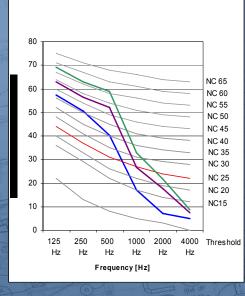
DOAS w/ Parallel Cooling

- Green Roof Application
- Energy Analysis
- Acoustics Analysis
 - Ambient Outdoor Noise
 - Green Roof Effect
 - Mechanical Noise
 - Design Comparison
- Structural Analysis
- LEED Analysis
- Cost Analysis

The SLCC has several acoustically sensitive spaces:

- Audiology Labs (NC 25)
- Classrooms (NC 25)
- Hearing Aid Clinic (NC 20)

Patrick B. Murphy Mechanical Option


AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
 - Ambient Outdoor Noise
 - Green Roof Effect
 - Mechanical Noise
 - Design Comparison
- Structural Analysis
- LEED Analysis
- Cost Analysis

Three cases of outdoor ambient noise are considered:

Case 1: Average ambient conditions (NC 47, Blue).Case 2: A car driving by the site (NC 58, Purple).Case 3: A large diesel truck driving by the site (NC 62, Green).

NC Level: Ambient Outdoor Noise

(Measured on site during morning rush hour)

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
 - Ambient Outdoor Noise
 - Green Roof Effect
 - Mechanical Noise
 - Design Comparison
- Structural Analysis
- LEED Analysis
- Cost Analysis

The Green Roof mass dampens sound waves under 1000hz and soil/plants dampen sound waves over 2000hz.

TL₁₀₀₀ = 20 log (M_{green roof} / M_{original roof})

TL₂₀₀₀ = freq * thickness * (0.5 dB cm-1 khz-1)

There is an additional 10dB TL through the Green Roof at each octave band.

Calculated Roof Transmission Losses

	Transmission Loss (TL) [dB]								
Frequency [Hz] \rightarrow	125	250	500	1000	2000	4000			
Original Roof	17	22	26	30	35	41			
Green Roof	27	32	36	40	45	61			
Mass of Original Ro	Mass of Original Roof [psf]: 10.0								
Mass of Green Roc	of [psf]:			30.0					
Green Roof Thickn	hickness [cm]: 10.0								
Soil Attenuation Co	efficient	[dB cm ⁻¹	khz ⁻¹]:	0.5					

Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
 - Ambient Outdoor Noise
 - Green Roof Effect
 - Mechanical Noise
 - Design Comparison
- Structural Analysis
- LEED Analysis
- Cost Analysis

The proposed DOAS system is quieter than the original VAV system.

- Sound attenuators may be eliminated.
- Air flow and fan noise is reduced.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
 - Ambient Outdoor Noise
 - Green Roof Effect
 - Mechanical Noise
 - Design Comparison
- Structural Analysis
- LEED Analysis
- Cost Analysis

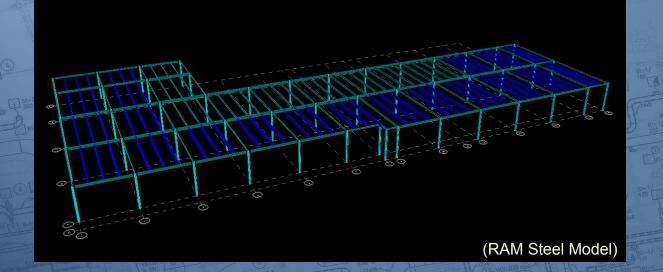
The Green Roof allows mechanical noise to dominate in all cases.

The quieter mechanical system allows spaces to meet design noise criteria.

			NC Level [dB] within SLCC							
	Scenario			HSLS Fac. Lab	Classroom	Hearing-Aid				
				(3122B-C, H-L)	(2302)	Fitting (2207)				
Design Goal (per Project Narrative) →			<25	<25	25	20				
Original	Original	Case 1: Average Outdoor Noise	25	20	20	16				
Mechanical	Roof	Case 2: Car driving by site	32	32	33	20				
System	1,001	Case 3: Large truck driving by site	32	32	33	19				
Original	Green	Case 1: Average Outdoor Noise	25	17	20					
Mechanical	Roof	Case 2: Car driving by site	25	20	21					
System	RUUI	Case 3: Large truck driving by site	25	21	23					
Proposed	Original	Case 1: Average Outdoor Noise	20	23	20	<15				
DOAS	Roof	Case 2: Car driving by site	31	33	33	18				
System	1,001	Case 3: Large truck driving by site	30	31	32	<15				
Proposed	Green	Case 1: Average Outdoor Noise	20	20	20					
DOAS	Roof	Case 2: Car driving by site	20	23	20					
System	RUUI	Case 3: Large truck driving by site	20	23	20					

NC Levels for Various Scenarios and System Designs

(Red values indicate scenarios that do NOT meet design noise criteria)


Patrick B. Murphy Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis

The original structural design has the capacity to carry the additional green roof gravity load.

- Extensive roof gravity load only 25 psf.
- All roof joists, girders, and columns are capable of
 - supporting this additional load.

The SLCC is designed to LEED-NC v2.1 criteria.

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
 - Original Design
 - Proposed Design
- Cost Analysis

(USGBC)

James Lee

LEED Certified Rating.

Sorenson Language and Communication Center

The original SLCC is expected to garner a

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis

LEED Analysis

- Original Design
- Proposed Design
- Cost Analysis

	Cert	ied 26 to 32 points Silver 33 to 38 points Gold 39 to 51 point	ts Plat	inum 5	i2 or m	ore poi	ints	
1		ainable Sites Possible Poir	its 14	6			ateria	als & Resources Possible Point
?	N			Y		N		
	Prereq			Ŷ	<u>uuuuuu</u>	Prer		Storage & Collection of Recyclables
	Credit	Site Selection	1				dit 1.1	Building Reuse, Maintain 75% of Existing Shell
	1 Credit	· · · · · · · · · · · · · · · · · · ·	1			-	dit 1.2	Building Reuse, Maintain 100% of Existing Shell
	1 Credit		1				dit 1.3	Building Reuse, Maintain 100% Shell & 50% Non-Shell
	Credit		1	1			dit 2.1	Construction Waste Management, Divert 50%
	1 Credit	· · · · · · · · · · · · · · · · · · ·	1	1			dit 2.2	Construction Waste Management, Divert 75%
	1 Credit	· · · · · · · · · · · · · · · · · · ·	1				dit 3.1	Resource Reuse, Specify 5%
1	Credit		1				dit 3.2	Resource Reuse, Specify 10%
	1 Credit		1	1		Crea	dit 4.1	Recycled Content, Specify 25%
	Credit	2 Reduced Site Disturbance, Development Footprint	1	1		Crea	dit 4.2	Recycled Content, Specify 50%
	1 Credit	 Stormwater Management, Rate and Quantity 	1	1		Crea	dit 5.1	Local/Regional Materials, 20% Manufactured Locally
	Credit	2 Stormwater Management, Treatment	1	1		Crea	dit 5.2	Local/Regional Materials, of 20% Above, 50% Harvested Locally
	Credit	1 Landscape & Exterior Design to Reduce Heat Islands, Non-R	oof 1				dit 6	Rapidly Renewable Materials
	Credit	2 Landscape & Exterior Design to Reduce Heat Islands, Roof	1			1 Crea	dit 7	Certified Wood
	1 Credit	Light Pollution Reduction	1					
				6	1	8 In	door	Environmental Quality Possible Point
	1 Wat	er Efficiency Possible Poir		Y	?	N		
?	N			Y		///// Prer	req 1	Minimum IAQ Performance
	Credit	1 Water Efficient Landscaping, Reduce by 50%	1	Y		///// Prer	req 2	Environmental Tobacco Smoke (ETS) Control
	Credit	2 Water Efficient Landscaping, No Potable Use or No Irrigation	1			1 Crea	dit 1	Carbon Dioxide (CO ₂) Monitoring
	1 Credit	Innovative Wastewater Technologies	1			1 Crea	dit 2	Increase Ventilation Effectiveness
	Credit	1 Water Use Reduction, 20% Reduction	1	1		Crea	dit 3.1	Construction IAQ Management Plan, During Construction
	Credit	2 Water Use Reduction, 30% Reduction	1		1	Crea	dit 3.2	Construction IAQ Management Plan, Before Occupancy
				1		Crea	dit 4.1	Low-Emitting Materials, Adhesives & Sealants
2	12 Ene	gy & Atmosphere Possible Poir	ts 17	1		Cree	dit 4.2	Low-Emitting Materials, Paints
?	N			1		Cree	dit 4.3	Low-Emitting Materials, Carpet
	//////Prereg	Fundamental Building Systems Commissioning		1		Cred	dit 4.4	Low-Emitting Materials, Composite Wood
	///// Prereg	Minimum Energy Performance		1		Cred	dit 5	Indoor Chemical & Pollutant Source Control
	///// Prereg					1 Cree	dit 6.1	Controllability of Systems, Perimeter
1	Credit		2			1 Crea	dit 6.2	Controllability of Systems, Non-Perimeter
-	2 Credit	2 Optimize Energy Performance, 30% New / 20% Existing	2			1 Cree	dit 7.1	Thermal Comfort, Comply with ASHRAE 55-1992
_	2 Credit		2				dit 7.2	Thermal Comfort, Permanent Monitoring System
-	2 Credit		2				dit 8.1	Daylight & Views, Daylight 75% of Spaces
-	2 Credit		2				dit 8.2	Daylight & Views, Views for 90% of Spaces
-	1 Credit		1					
-	1 Credit		1	3		2 In	nova	tion & Design Process Possible Point
_	1 Credit		1	Ŷ		N		
	Credit		1		·	_	dit 1.1	Innovation: Educational Case Study
-	Credit		1					Innovation: Exceed Water Use Reduction by an additional 10%
	1 Credit		1	1			dit 1.3	Innovation in Design: Exceed Recycled content by an additional 25%
							dit 1.4	Innovation in Design: Process Load Reduction
1	Credit	Green Power	1					

James Lee

LEED SILVER Rating.

Sorenson Language and Communication Center

The proposed SLCC design could gain a

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis

LEED Analysis

- Original Design
- Proposed Design
- Cost Analysis

LE	LEED [™] Scorecard - Gallaudet University - SLCC Proposed Design								
34	34 3 32 Total Project Score Possible Points 69								
-				26 to 32 points Silver 33 to 38 points Gold 39 to 51 points	Platin	um 52 o	r mor	e points	
7	1	6		nable Sites Possible Points		6	7		als & Resources Possible Points 13
Y	?	N	ouorai		1-1	Y ?	N	matori	
Y			Prereq 1	Erosion & Sedimentation Control		Y ////		Prereq 1	Storage & Collection of Recyclables
1			Credit 1	Site Selection	1		11		Building Reuse, Maintain 75% of Existing Shell 1
<u> </u>		1	Credit 2	Urban Redevelopment	1		1	Credit 1.2	Building Reuse, Maintain 100% of Existing Shell 1
		1	Credit 3	Brownfield Redevelopment	1		11	Credit 1.3	Building Reuse, Maintain 100% Shell & 50% Non-Shell 1
1		-	Credit 4.1	Alternative Transportation, Public Transportation Access	1	1	1	Credit 2.1	Construction Waste Management, Divert 50%
<u> </u>		1	Credit 4.2	Alternative Transportation, Bicycle Storage & Changing Rooms	1	1		Credit 2.2	Construction Waste Management, Divert 75% 1
		1	Credit 4.3	Alternative Transportation, Alternative Fuel Refueling Stations	1		1	Credit 3.1	Resource Reuse, Specify 5% 1
	1		Credit 4.4	Alternative Transportation, Parking Capacity	1		1	Credit 3.2	Resource Reuse, Specify 10% 1
		1	Credit 5.1	Reduced Site Disturbance, Protect or Restore Open Space	1	1		Credit 4.1	Recycled Content, Specify 25% 1
1			Credit 5.2	Reduced Site Disturbance, Development Footprint	1	1		Credit 4.2	Recycled Content, Specify 50% 1
1			Credit 6.1	Stormwater Management, Rate and Quantity	1	1		Credit 5.1	Local/Regional Materials, 20% Manufactured Locally 1
1			Credit 6.2	Stormwater Management, Treatment	1	1		Credit 5.2	Local/Regional Materials, of 20% Above, 50% Harvested Locally 1
1			Credit 7.1	Landscape & Exterior Design to Reduce Heat Islands, Non-Roof	1		1	Credit 6	Rapidly Renewable Materials 1
1			Credit 7.2	Landscape & Exterior Design to Reduce Heat Islands, Roof	1		1	Credit 7	Certified Wood 1
<u> </u>		1	Credit 8	Light Pollution Reduction	1				
			•	•		6 1	8	Indoor	r Environmental Quality Possible Points 15
4		1	Water	Efficiency Possible Points	5	Y ?	N		
Y	?	N				Y ////		Prereq 1	Minimum IAQ Performance
1			Credit 1.1	Water Efficient Landscaping, Reduce by 50%	1	Y ///		Prereq 2	Environmental Tobacco Smoke (ETS) Control
1			Credit 1.2	Water Efficient Landscaping, No Potable Use or No Irrigation	1		1	Credit 1	Carbon Dioxide (CO ₂) Monitoring 1
		1	Credit 2	Innovative Wastewater Technologies	1		1	Credit 2	Increase Ventilation Effectiveness 1
1			Credit 3.1	Water Use Reduction, 20% Reduction	1	1		Credit 3.1	Construction IAQ Management Plan, During Construction 1
1			Credit 3.2	Water Use Reduction, 30% Reduction	1	1		Credit 3.2	Construction IAQ Management Plan, Before Occupancy 1
11000						1		Credit 4.1	Low-Emitting Materials, Adhesives & Sealants 1
8	1	8	Energy	Atmosphere Possible Points	17	1		Credit 4.2	Low-Emitting Materials, Paints 1
Y	?	N				1		Credit 4.3	Low-Emitting Materials, Carpet 1
Y			Prereq 1	Fundamental Building Systems Commissioning		1		Credit 4.4	Low-Emitting Materials, Composite Wood 1
Y			Prereq 2	Minimum Energy Performance		1		Credit 5	Indoor Chemical & Pollutant Source Control 1
Y			Prereq 3	CFC Reduction in HVAC&R Equipment			1	Credit 6.1	Controllability of Systems, Perimeter 1
2			Credit 1.1	Optimize Energy Performance, 20% New / 10% Existing	2		1	Credit 6.2	Controllability of Systems, Non-Perimeter 1
2			Credit 1.2	Optimize Energy Performance, 30% New / 20% Existing	2		1	Credit 7.1	Thermal Comfort, Comply with ASHRAE 55-1992 1
2			Credit 1.3	Optimize Energy Performance, 40% New / 30% Existing	2		1	Credit 7.2	Thermal Comfort, Permanent Monitoring System 1
		2	Credit 1.4	Optimize Energy Performance, 50% New / 40% Existing	2		1	Credit 8.1	Daylight & Views, Daylight 75% of Spaces 1
		2	Credit 1.5	Optimize Energy Performance, 60% New / 50% Existing	2		1	Credit 8.2	Daylight & Views, Views for 90% of Spaces 1
		1	Credit 2.1	Renewable Energy, 5%	1				
		-	Credit 2.2	Renewable Energy, 10%	1	3	2	Innova	ation & Design Process Possible Points 5
-		1	Credit 2.3	Renewable Energy, 20%	1	Y ?	N		
1			Credit 3	Additional Commissioning	1	1		Credit 1.1	Innovation: Educational Case Study 1
1			Credit 4	Ozone Depletion	1		1	Credit 1.2	Innovation: Exceed Water Use Reduction by an additional 10% 1
		1	Credit 5	Measurement & Verification	1	1		Credit 1.3	Innovation in Design: Exceed Recycled content by an additional 25% 1
	1		Credit 6	Green Power	1		1	Credit 1.4	Innovation in Design: Process Load Reduction 1
						1		Credit 2	LEED [™] Accredited Professional 1
5									
					10-2				

first cost.

James Lee

Sorenson Language and Communication Center

Patrick B. Murphy

Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis
 - First Costs
 - Expected Savings

Simple Payback

100%	Cost	Estimate

The proposed SLCC design has a \$1.83M increased

CSI Division	Description	Actual Design Estimate	Proposed Design Estimate	Per SF*	\$ %
1	General Requirements, OH&P	\$3,089,683	\$3,089,683	\$35.23	12.9%
2	Site Work	\$1,892,332	\$1,907,497	\$21.75	8.0%
3	Concrete Work	\$1,450,126	\$1,450,126	\$16.53	6.1%
4	Masonry Work	\$672,143	\$672,143	\$7.66	2.8%
5	Metals	\$2,457,684	\$2,457,684	\$28.02	10.3%
6	Wood and Plastics	\$297,970	\$297,970	\$3.40	1.2%
7	Thermal and Moisture Protection	\$1,331,078	\$1,621,177	\$18.48	6.8%
8	Doors and Windows	\$1,351,056	\$1,351,056	\$15.40	5.7%
9	Finishes	\$2,407,854	\$2,389,132	\$27.24	10.0%
10	Specialties	\$145,529	\$145,529	\$1.66	0.6%
11	Equipment	\$69,701	\$69,701	\$0.79	0.3%
12	Furnishings	\$33,018	\$33,018	\$0.38	0.1%
13	Special Construction	\$0	\$0	\$0.00	0.0%
14	Conveying Systems	\$274,720	\$274,720	\$3.13	1.1%
15	Mechanical Systems	\$3,835,441	\$4,576,300	\$52.18	19.2%
16	Electrical Systems	\$2,364,277	\$2,364,277	\$26.96	9.9%
	SUB-TOTAL	\$21,672,612	\$22,700,013	\$258.83	
5	.25% Escalation to Const .:	\$22,810,424	\$23,891,764	\$272.41	

*Area [SF] = 87,704

Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis
- Cost Analysis
 - First Costs
 - Expected Savings
 - Simple Payback

The proposed SLCC design has an expected annual savings of \$31,000.

- Higher mechanical system replacement costs.
- No need to replace green roof.
- Roof maintenance for possible leaks replaces regular cleaning of high-albedo membrane.

Description	Unit	Original Total	Proposed Total	Savings
Electricity	\$/yr	\$61,591.00	\$54,344.00	\$7,247.00
Chilled Water	\$/yr	\$90,174.00	\$67,024.00	\$23,150.00
Hot Water	\$/yr	\$1,237.00	\$494.00	\$743.00
Mech. System Maintenance	\$/yr	\$115,063.23	\$114,407.51	\$655.72
Mech. System Repairs/Replacement	\$/5yr	\$383,544.10	\$457,630.02	-\$74,085.92
Mech. System Repairs/Replacement	\$/20yr	\$2,876,580.75	\$3,432,225.17	-\$555,644.42
Roof Maintenance	\$/yr	\$9,935.05	\$9,776.00	\$159.05
Roof Replacement	\$/20yr	\$198,701.00	\$0.00	\$198,701.00

Operation and Maintenance Costs

Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Thesis Investigations

- DOAS w/ Parallel Cooling
- Green Roof Application
- Energy Analysis
- Acoustics Analysis
- Structural Analysis
- LEED Analysis

Cost Analysis

- First Costs
- Expected Savings
- Simple Payback

The proposed SLCC design has an expected 34 year simple payback period.

- An ideal payback period is less than 3 years.
- Since the owner is an institution they may be more willing to absorb the first cost.

Simple Payback Period

	First Cost	Change in	O&M Cost	Payback
	Filst Cost	First Cost	per year	(yrs.)
Original Design	\$22,810,424	\$0	\$278,000	0.00
Proposed Design	\$23,891,764	\$1,081,340	\$246,046	33.84

Patrick B. Murphy Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

Therefore the proposed DOAS system AND Green Roof should be applied to the current SLCC design.

- Energy savings of about \$31,000/yr.
- All spaces meet acoustic criteria.
- Improved LEED Rating of Silver.

• These benefits and the institutional nature of the owner may outweigh the relatively long payback period.

Patrick B. Murphy Mechanical Option AE Senior Thesis Presentation Wednesday, March 18, 2007

I would like to thank these people for their help in completing this thesis:

Design Team: S G C

SmithGroup, Inc. Greg Mella, Project Architect Cindy Cogil, Lead Mechanical Engineer

Penn State Architectural Engineering FacultyMy family, especially my parents.My friends and colleagues, especially Malory and Erin.

Patrick B. Murphy Mechanical Option

AE Senior Thesis Presentation Wednesday, March 18, 2007

Questions?

